STRUCTURE OF WEAK SHOCK WAVES IN RELAXING MEDIA
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We examine the structure of a weak shock wave in media with temperature relaxation. It is assumed that the
state of the matter in the transition layer changes slowly in relation to the establishment of equilibrium.

It is known that if a shock wave propagates through a relaxing medium and the relaxation time is significantly
longer than the molecular collision time we observe a significant change of the shock wave structure and, in particular,
a considerable increase of the width of its transitional layer. This question was first examined by Zel'dovich in [1] and
later in other studies (see, for example [2]).

For strong and moderate shock waves the behavior of the parameters in the relaxation zone can be studied by
numerical integration of the gasdynamic equations together with the kinetic equation. An example of such a numerical
calculation in application to excitation of the vibrational degrees of freedom in molecular hydrogen is given in [3]. As
for shock waves of low intensity, in this case an analytic solution of the problem is possible. Such a solution was given
by D'yakov in [4] for the case in which the limiting values of the speed of sound differ very little from one another.

1. Assume the state of the matfer in the transition layer of a shock wave changes slowly in relation fo the
establishment of equilibrium (for this the amplitude of the shock wave must be sufficiently small). Then, as shown in
[4], the treatment of the relaxation process in the spirit of the Mandel'shtam-Leontovich method [5] can be used to
study the shock wave structure. In accordance with this method, the presence of the relaxation processes for
sufficiently slow changes of state is equivalent to an anomalously large second viscosity of the medium

L= 1p (uy,? — Uy?) (1.1)

Here T is relaxation time, p is density of the medium, u, is the speed of sound for frequencies whichare sohigh
that the relaxational processes in the sound wave are completely "frozen," uy is the speed of sound for frequencies
which are so low that the medium in the sound wave can reach complete thermodynamic equilibrium. Consequently, in
this case we can use the conventional formulas of hydrodynamic theory of the shock wave transition layer [6], in which
heat conduction and the first viscosity are neglected.

Then we have the known formula for the behavior of the pressure in the transition layer

+ BB n (1.2)

+ 2
p=RTE

Here p; — py = Ap is the pressure differential in the shock wave, and 6 is the width of the transition zone, equal
to

sy
8= W@V 0P Ap ¢ .9

In (1.3) V is specific volume, ¢ is defined by (1.1), and s is entropy.

Since these formulas are applicable when the state of the medium in the transition layer varies slowly in relation
to the establishment of equilibrivm, this means that

6.> UpT, (1.4)

Using (1.1) and (1.3), we write (1.4) as
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W (u,? — ug?)

A I (1.5)

Thisis the formulation in general form for applicability of the second viscosity concept.

In the present paper we examine the structure of a weak shock wave in media in which there is temperature
relaxation.It is assumed that the state of the matter in the transition layer changes slowly in relation to the
establishment of equilibrium, i.e., condition (1.5) is satisfied and therefore (1.2} and (1.3) are applicable. As the
relaxing media we examine two~component mixtures, such as emulsions of one liquid in another or a gas aad
suspension of solid particles in it. During compression of the matter in the shock wave, a temperature difference
develops between the components of such a medium and this difference leads to the heat transfer relaxation process.
(We note that when (1.3) and (1.1) are substituted into (1.4),7 isexcludedfrom (1.5). Since of all the quantities appearing
in these relations only 7 depends on the thermal conductivity of the suspension particles, the condition of applicability
of the second viscosity concept (1.5) is independent of the thermal conductivity of these particles.)

We shall examine this question in more detail, assuming hereafter that the nonhomogeneity scale of the medium
is small in comparison with the width of the shock wave transition layer.

2. We represent the relaxing medium as a system consisting of a filter (first component) with particles (second
component) distributed in it. To determine the relaxation time r we denote by r the radius of the particles suspended in
the {iller and examine, for example, the problem of propagation of periodic temperature oscillations in a homogeneous
half~space. We examine this problem without initial conditions, since in the case of multiple repetition of the
temperature cycle on the surface we can neglect the influence of the initial temperature of the medium. Thus we arrive
at the problem {7}

AT AT
2t =P gn 0<e< o, —ooY) (2.1)
where AT satisfies the condition
AT (0, = A coswt (2.2)

Here AT is the difference between the absolute temperature of the point x at time t and its initial temperature, a
is the thermal diffusivity of the medium, and w is the frequency of the temperature oscillation at its surface.

The solution of this problem has the form [8]

AT (2, t) = Aexp <~— l/—z-_(%x) cos <1/g—zx~ mt> . (2.3)

It follows from (2.3) that if the surface temperature changes periodically,temperature oscillations with the same
period are also established in the medium, and the amplitude of the oscillations decreases exponentially with depth:

A(@) =4 exp (——- ‘/zzaz x> . (2.4)

Let us determine the period of the temperature oscillations at the surface for which the amplitude of the
oscillation diminishes by a factor of e at the distance r. The magnitude of this period can obviously be taken equal to
the unknown relaxation time. Assuming, in addition, that a® =% /pce (where . is the thermal conductivity of the medium,
¢ is its specific heat, and p is density), we obtain

T = qper® /[ n, (25)

3. Knowing the mechanical and thermodynamic constants of the components of the medium, we can determine the
limiting values of the speed of sound (we note that there is an obvious misprint in the formula for v presented in [9],
which can be established easily on the basis of dimensional analysis). We use subscripts to denote quantities relating
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to the first and second components, respectively; they are omitted on quantities relating to both the first and second
components and to the mixture as a whole.

We have for the adiabatic compressibility of an individual component
1 /8v 1[0V
-7 (5= =) (3.2

Using known thermodynamic relations [10], it.is easy to show with the aid of (3.1) that

e 2

where Cp is the constant-pressure specific heat.

Now let us examine an arbitrary mass of the mixture of volume V. In determining u, we must keep in mind that
this assumes such rapid change of the state of the medium that there is no heat transfer between its components. In this
connection it is well to introduce the concept of the "adiabatic-adiabatic" compressibility of the medium, which
obviously will be

Wiy foVs
Ggs =_(—‘8_Pl)s_(\_5)s (3.3)
Then we have for u
U, = US;I‘/ 14 (3.4)

where V now means the specific volume of the mixture. We substitute into (3.4) the value of o referred to unit mass
of the medium and we make use of (3.1) and (3.2). Then, assuming that for the mixture

p=¢tm+ (1 —¢p: (3.5)

(e is the volume concentration of the first component), we finally obtain

wt =+ (=) 2 (52, + U520 (F) . (3.6)

In (3.6) V; and Vj are the specific volumes of the components of the mixture.

In determining vy it is necessary to know the "adiabatic-isothermal” compressibility of the mixture. We denote
it by opg. This agsumes such slow change of the state of the mixture that the "macroscopic" compression and
expansion processes take place adiabatically, while the "microscopic” processes are isothermal, i.e., the
temperatire difference between the components can equalize. Consequently, in this case the components of the mixture
are at all times at the same pressure and temperature. This means that in determining o ng We must take p and T as
the independent thermodynamic variables. Using for this purpose relations (3.2) and taking account of the additivity of
the quantities in this expression, we obtain

(o (s r oy (v P
ors=— (5 (57 )~ T 7o T TmT W o+ (37 ] - 8.7
We have for ug
uy == 0;{‘*9/ vV (3.8)

where, as in (3.4), V is the specific volume. Substituting the value of oTg, per unit mass into (3.8), we finally obtain
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upP== — [ep1+ (1 — ) po) {epl (%)T +{—ep: (%)T +
- sm [691 (%?‘})p + U —¢)p (%)pr} . (8.9)

In (3.9) Vy and Vj are the specific volumes of the first and second components, and cp; and cp; are their specific
heats.

4. The basis of this analysis is the assumption of slow change of the state of the medium in the transition layer
in relation to the establishment of equilibrium. Consequently the guantity (82V/8p2)s, in (1.3) and (1.5) must be
determined with account for the fact thatthe temperature difference between the components of the medium can equalize
during compression in the shock wave, i.e., macroscopically the process takes place adiabatically, while
microscopically it takes place isothermally. Thus, here again we must take the pressure and temperature as the
independent variables.

To do this we represent the quantity (azv/apz)s in terms of the variables p and T for the individual component. It
follows from (3.2) that

<%)a=i(}7’ T) 4.1)

where the function f{(p,T) denotes

i@ D= (%%)T + % (%%): . (4.2)

Considering T as a function of p and s, after differentiating (4.1) with respect to p we obtain
PV (of df \ 8T
( ap? )a = ( ap )r + (\?97"'),, (’a?), . 4.3)

Setting cp = const, it is easy to find on the basis of (4.2) the values of (8f/8p) and (Bf/aT)p. Then, using the
known thermodynamic relation [10]

(5= (5 )
we finally obtain
&)= G5+ (Gohamr+ 2 57

In (4.5) V and ¢p are either the specific volume and the specific heat or the volume and heat capacity of an
arbitrary mass.

(57), +22 (5%, (4.5)

\

Considering the additivity of the quantities appearing in (4.5), we can show that for unit mass of the mixture

4 v {82V 3
() =5 e+ = (G + iy I (57, +
v, oy 52
vV

I3
s EEN G+ (3, o (), -0l ]

In (4.6) V4 and V; are the specific volumes of the components of the mixture, Cpi and cp; are their specific heats,
and n is the mass concentration of the first component, connected with & by the relation
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&p1

"o+ (1—e)pe 4.7

5. Assume that the first component of the mixture is 2 gas and the second consists of solid or liquid particles
suspended in the gas. For such systems we can neglect the compressibility of the second component in comparison
with the first. This leads to considerable simplification of the relations obtained above. In fact, we set in (3.8), (3.9),
and (4.6)

(), = (%) ~(22), = (22 22
7 o =\t )=~ 577 )r =& )y =aper =0

Then, using the equation of state of the ideal gas to calculate the derivatives, we obtain for uw

2 A
teo ={B [391+(1—a)pz]} b (5.1)
and we obtain for ug
A PL [8{)1 Co1 +(1—8) Py 5p2] e
up = { & {ep; + (1 —e)py] [epy ¢y + (1 — £) Typylp,) } ! 6.2)

Here the quantity (3*v/op® g Will be defined by the formula

(@ﬂV) _ elepyoy + (L) 1ypyep] [e(T A1) py ey + 2 (1 —8) 11Py € o) 5.3)
$ . .

P T2p* [epy - (L — 8] gl [80y Oy + (1 — &) Py cp, I

In (5.1)- (5.3) u; is the conventional speed of sound in the gas, corresponding to the first component of the
medium, i.e.,

Sinceyy > 1, it follows immediately from (5.1} and (5.2) that in the case in question ue >y always.

The assumption made on incompressibility of the second component makes it possible to simplify considerably
the form of condition (1.5) concerning applicability of the second viscosity concept. In fact, if in the right-hand side of
(1.5) we substitute (3.5) and the formulas (5.1)—(5.3) obtained in this section, then after several transformations we can
obtain the relation

Ap 21109 Cpp (13 — (1 —2)
P < (11 + D Py 0B -+ 2705 000 (1_3)2‘13(9) . (5.5)

It follows from (5.5) that ¢(0) =y, — 1 and $(1) = 0. In the interval [0,1]¥(e) decreases monotonically, since

a 211P1Pg Oy 6y (1° — 1) 0
T = T Ty T D py0p18 4 2010y 0pg L — B O

Consequently, the larger the gas content in the mixture the weaker the shock wave must be in order that the
condition concerning applicability of the second viscosity be satisfied. However, we must note that on most of the
interval 0,1} the reduction of ¢ is very slight and ¢ is essentially equal toyy — 1. Only for values of £ very close to
unity does the change of ¢ become significant.

In fact, it follows from (5.5) that

29ipaep: (1 — &) 2 10 (y1 - 1) prepr 8 2> (1 + Dprepe (5.6)
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and therefore we can set y(e) =y, — 1, if

a<(1+§_(71~+9_.‘3‘fﬂ)_1. (5.7)

T P2Cpy
However, since on the other hand

ym SED P g
T1 Pacpe

by expanding the right-hand side of (5.7) into a series in « this condition can be written in the form

ettt P (5.8)
T Pofpy

Thus, if € = ¢,, the condition for applicability of the second viscosity is written in the simple form

Aplp<Ly—1. 6.9)

Calculations showed that for systems suchashelium-coal, air-coal, air-water, andair-quartz,the values of €,
equal, respectively, 0.993, 0.990, 0.998, and 0.995.

1—e 10~ 102 10~ 104 103
helivm~coal
u, 3.78-108 1.13.10¢ 3.37.108 7.46.10% 9.55.404
uy 2.93-108 8.89-108 2.88.104 7.2-10¢ 9.51.10%
P 0.666 0.629 0.405 8.88.10 1.01-10"
Apd 1.54.108 4£.42.40° 9.86.108 6.73-40% 1.14.108
8/8, 1.68.101 4.83-10t 1.08.102 7.35-101 1.24.101
air-coal
Uy 3.44.108 9.98.108 2.37.10¢ 3.24.10¢ 3.41.10
7 2,92.108 8.56.108 2,17.10¢ 3.19.10¢ 3.39-10¢
P 0.396 0.366 0.205 3.8.102 4,15.1072
Apd 1.04.108 2.81.408 4.02.108 1.14.108 1.35.10%
578 3.3%.400 9.17-10% 1.31.402 3.72.10t 4.4
air-water
Uy, 3.92.108 1.42.10¢ 2.52.104 3.28.40¢ 3.4-10%
u, 3.32.108 9.54-108 2.2.10¢ 3.42.10 3.38.40¢
P 0.399 0.390 0.321 0.116 1.56.107
Apd 3.14-40¢ 8.84.10 1.67.108 8.74.10¢ 1.32.404
578, 1.02-10% 2.88.10° 5.45.108 2.85.108 4.,31.10%

The table presents the results of comparison of the width of the transition layer of a weak shock wave in pure
helium and pure air, calculated on the basis of the usual formula of hydrodynamic theory of the transition layer [6] (in
this formula both viscosities are assumed to have the same order of magnitnde), with the width of the transition layer
in the helium-coal, air-coal, and air-water systems, calculated on the basis of the relations obtained above. It was
assumed that in all cases the dimension of the particle suspended in the gas was r =10"%cm, p = 10° dynes/cm?, T =
= 288° K, and all the required data on the properties of the helium, air, coal, and water were taken from [11]. In this
table ¢ is the width of the transition layer in the mixture, and 6; is the width of the transition layer in the corresponding
gas for the same values of Ap. All the data are represented in the CGS system.

These data show that over a wide range of variation of 1 — ¢ the width of the transition layer in the mixture in the
helium-coal and air-coal systems is on the average more than an order of magnitude greater than in pure helium and
pure air. This difference is still greater in the air-water system, where the difference reaches three orders of

magnitude in comparison with the pure air.

As the content of the solid and liquid particles in the mixture decreases the value of é initially increases and
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after reaching a maximum then begins to decrease. These data also confirm the statements made above concerning the
variation of the function ¥(e).

6. When the densities of the components of the mixture differ significantly from one another, i.e., when one of
the components is a gas, the presence of the diffusion and barodiffusion phenomena leads to a change of the
concentration of the components in the transitionlayer of the weak shock wave and results in a considerable increase
of its width. As was shown in [12], in this case

Patpy IT(1—n)

e o

where [ is the mean free path of the gaseous molecule. Consequently, in such cases we must obviously consider in
addition to the thermal relaxation mechanism this additional mechanism of increase of 6. However, it can be shown
that the two processes are practically independent and do not affect one another.

In fact, it follows fromthe above table that a very large change of the concentration of the solid and liquid
particles in the gas has very little effect on the magnitude of 6 resulting from thermal relaxation. This effect will be
even less important for weak shock waves, where the concentration changes are small. Since these changes are due fo
the diffusion and barodiffusion phenomena the latter will have practically no influence on the thermal relaxation process.

Conversely, it follows from (6.1) that small changes of the temperature in the transition layer of weak shock
waves, which are connected with thermal relaxation, will not affect the value of & due to the diffusion and barodiffusion
phenomena.

Thus the processes in question actually are independent. This means that the width of the shock wave trangition
layer will be determined by the larger of the two values of 6 owing to these processes separately.

The author wishes to thank Ya. B. Zel'dovich, A. S. Kompaneits, N. M. Kuznetsov, and V. A. Belokon for
valuable suggestions and their interest in this study.
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