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We examine the s t ruc tu re  of a weak shock wave in media with t empera tu re  relaxat ion.  It is assumed that the 
state of the mat te r  in the t rans i t ion  layer  changes slowly in re la t ion to the es tab l i shment  of equi l ibr ium.  

It is known that if a shock wave propagates through a re laxing medium and the relaxat ion t ime  is s ignif icant ly 
longer than the molecular  col l is ion t ime we observe  a s ignif icant  change of the shock wave s t ruc tu re  and, in par t i cu la r ,  
a considerable  inc rease  of the width of its t rans i t iona l  layer .  This question was f i r s t  examined by Zel 'dovich in [1] and 
la ter  in other studies (see, for example [2]). 

For  strong and moderate  shock waves the behavior  of the pa rame te r s  in the relaxat ion zone can be studied by 
numer ica l  integrat ion of the gasdynamic equations together with the kinetic equation. An example of such a numer ica l  
calculat ion in application to excitation of the v ibra t ional  degrees  of freedom in molecular  hydrogen is given in [3]. As 
for shock waves of low intensi ty ,  in this case an analytic solution of the problem is possible .  Such a solution was given 
by D'yakov in [4] for the case in which the l imi t ing  values  of the speed of sound differ very  l i t t le f rom one another.  

1. Assume the state of the ma t t e r  in the t rans i t ion  layer  of a shock wave changes slowly in relat ion to the 
es tab l i shment  of equi l ibr ium (for this the amplitude of the shock wave mus t  be sufficiently small) .  Then, as shown in 
[4], the t r ea tmen t  of the relaxat ion p rocess  in the sp i r i t  of the Mandel ' sh tam-Leontovieh  method [5] can be used to 
study the shock wave s t ruc ture .  In accordance with this method, the p resence  of the relaxat ion processes  for 
suff icient ly slow changes of state is  equivalent  to an anomalously  large second viscos i ty  of the medium 

= ~p (%~ - ~o~) (1.1) 

Here r is relaxat ion t ime,  p is densi ty of the medium,  u~o is the speed of sound for f requencies  whichare  sohigh 
that the re laxat ional  p rocesses  in the sound wave are completely "frozen," u0 is the speed of sound for f requencies  
which a re  so low that the medium in the sound wave can reach complete thermodynamic  equil ibriun~ Consequently, in 
this case we can use the conventional formulas  of hydrodynamic theory of the shock wave t rans i t ion  layer  [6], in which 
heat conduction and the f i r s t  v i scos i ty  a re  neglected. 

Then we have the known formula  for the behavior of the p r e s su re  in the t rans i t ion  layer  

(1.2) 

Here Pl - P0 = Ap is the p r e s s u r e  differential  in the shock wave, and 5 is the width of the t ransi t ion zone, equal 
to 

2V3~ (1.3) 
8 ~ uu3 (O~V / 0p'~)s Ap " 

In (1.3) V is specific volume,  ~ is  defined by (1.1), and s is entropy.  

Since these formulas  are  applicable when the state of the medium in the t rans i t ion  layer  var ies  slowly in relat ion 
to the es tab l i shment  of equi l ibr ium,  this means  that 

5>~ uo~. (1.4) 

Using (1.1) and (1.3), we wri te  (1.4) as 
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2v"- (Uco~ - .  u0 ~) 
ApE ~(aW/op~), " (1.5) 

This is the formulat ion in genera l  form for applicabi l i ty  of the second v iscos i ty  concept. 

In the p resen t  paper we examine the s t ruc ture  of a weak shock wave in media in which there  is t empera tu re  
relaxat ion,  tt is a ssumed  that the state of the mat te r  in the t rans i t ion  layer  changes slowly in relat ion to the 
es tab l i shment  of equi l ibr ium,  i . e . ,  condition (1.5) is satisfied and therefore  (1.2) and (1.3) a re  applicable.  As the 
re laxing media we examine two-component  mix tures ,  such as emuls ions  of one liquid in another or a gas and 
suspension of solid par t ic les  in it. During compress ion  of the mat te r  in the shock wave, a t empera tu re  difference 
develops between the components of such a medium and this difference leads to the heat t r ans fe r  relaxat ion process .  
(We note that when (1.3) and (1.1) a re  subst i tuted into (1.4),-r i se •  Since of all the quant i t ies  appearing 
in these re la t ions  only ~" depends on the thermal  conductivity of the suspension par t ic les ,  the condition of applicabil i ty 
of the second v iscos i ty  concept (1.5) is independent of the the rmal  conductivity of these par t ic les . )  

We shall examine this question in more  detai l ,  a s suming  hereaf ter  that the nonhomogeneity scale  of the medium 
is smal l  in compar ison with the width of the shock wave t rans i t ion  layer .  

2. We r ep re sen t  the re laxing medium as a sys tem eons i s t ingof  a f i l ter  (f irst  component) with par t ic les  (second 
component) d is t r ibuted  in it. To de te rmine  the relaxat ion t ime T we denote by r the radius  of the par t ic les  suspended in 
the f i l ler  and examine,  for example,  the problem of propagation of periodic t empera tu re  osci l la t ions  in a homogeneous 
hal f -space .  We examine this problem without ini t ial  conditions,  since in the case of mult iple  repet i t ion of the 
t empera tu re  cycle on the surface we can neglect the influence of the ini t ial  t empera tu re  of the medium.  Thus we a r r i ve  
at the problem [7] 

OAT O~AT 
Ot = ~ 7  (O~x< o , - - ~ < t )  (2.1) 

where AT sat isf ies  the condition 

AT (0, t )= A cosot (2.2) 

Here AT is the difference between the absolute t empera tu re  of the point x at t ime t and its ini t ia l  t empera tu re ,  a z 
is the thermal  diffusivity of the medium,  and w is the frequency of the t empera tu re  osci l la t ion at its surface.  

The solution of this problem has the form [8] 

AT(x, t) : A exp (-- yP~-~x) cos ( yP~-~--~ x-- ~t) . (2.3) 

It follows from (2.3) that if the surface t empera tu re  changes pe r iod ica l ly , t empera tu re  osci l la t ions  with the same 
period are  also establ ished in the medium,  and the amplitude of the osc i l la t ions  dec reases  exponential ly with depth: 

A ( x ) : A  exp (-- ~ / f ~  x). (2.4) 

Let us de termine  the period of the t empera tu re  osci l la t ions  at the surface for which the amplitude of the 
osci l la t ion d imin ishes  by a factor of e at the dis tance r .  The magnitude of this period can obviously be taken equal to 
the unknown relaxat ion t ime. Assuming,  in addition, that a 2 = ~4/pc (where ~ is the the rmal  conductivity of the medium,  
c is its specific heat, and p is density),  we obtain 

~ nPcr 2 / • (2.5) 

3. Knowing the mechanical and thermodynamic constants of the components of the medium, we can determine the 
limiting values of the speed of sound (we note that there is an obvious misprint in the formula for u~ presented in [9], 

which can be established easily on the basis of dimensional analysis). We use subscripts to denote quantities relating 
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to the f i r s t  and second components,  respect ively;  they a re  omitted on quanti t ies  r e l a t ing  to both the f i r s t  and second 
components and to the mix ture  as a whole. 

We have for the adiabatic compress ib i l i ty  of an individual component 

t t, av~  ~ o v  
(3.1) 

Using known thermodynamic  re la t ions  [10], i t  is easy to show with the aid of (3.1) that 

fov~ ~ fav~ r iov~  
- ' V  \ ~ - 1 ~  = - - V  \~ -p  )r - ~ \ ~ - / ~  (3.2)  

where Cp is the c o n s t a n t - p r e s s u r e  specific heat.  

Now let  us examine an a r b i t r a r y  m a s s  of the mixture  of volume V. In de te rmin ing  u.o we must  keep in mind that 
this assumes  such rapid change of the state of the medium that there is  no heat t r ans fe r  between i ts  components.  In this 
connection it is well to introduce the concept of the "adiabat ic-adiabat ic"  compress ib i l i ty  of the medium,  which 
obviously will be 

~ ,  = - -  , - ~ - - / ,  - -  ~,-g~/~ ( 3 . 3 )  

Then we have for uoo 

u~ = a a'1' 1 V (3.4) 

where V now means  the specific volume of the m i x t u r e .  We subst i tute into (3.4) the value of ass  re fe r red  to unit  mass  
of the medium and we make use of (3.1) and {3.2). Then, assuming  that for the mixture  

p =  spl-? (t -- 8) p~ 

(~ iS the volume concentrat ion of the f i r s t  component),  we f inally obtain 

(3.5)  

[-Spl 
(3.6) 

In (3.6) V~ and V 2 are  the specific volumes of the components of the mixture .  

In de te rmin ing  u 0 it is neces sa ry  to know the "ad iaba t ic - i so thermal"  compress ib i l i ty  of the mixture.  We denote 
it  by ~TS" This a s sumes  such slow change of the state of the mixture  that the "macroscopic"  compress ion  and 
expansion processes  take place adiabat ical ly,  while the "microscopic"  p rocesses  a re  i so thermal ,  i . e . ,  the 
t empera tu re  difference between the components can equalize. Consequently,  in this case the components of the mix ture  
a re  at all  t imes  at the same p re s su re  and t empera tu re .  This means  that in de te rmin ing  oTS we must  take p and T as 
the independent thermodynamic  var iab les .  Using for this purpose re la t ions  (3.2) and taking account of the additivity of 
the quanti t ies  in this express ion ,  we obtain 

lay,\  {av,\ r V{aVq + lay2\ -,~ 
~rs~-  - \ W p j r -  \ ~ } r  - (vl + v~) [8~1% 1 + (t - ~) P~%~l L\~-f ]~ \ ~ h , J  " (3.7) 

We have for u0 

~o = o ~ / v  (3.8)  

where,  as in (3.4), V is the specific volume. Substituting the value of ~TS, per unit  mass  into (3.8), we finally obtain 
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f {OVa\ /OV~\ 

T OV~ OV~ (3.9) 

In (3.9) V i and VZ are  the specific volumes of the f i r s t  and second components,  and Cp~ and Cpz are their  specific 
heat s. 

4. The bas i s  of this analys is  is the assumpt ion of slow change of the state of the medium in the t rans i t ion  layer  
in re la t ion to the es tab l i shment  of equi l ibr ium.  Consequently the quantity (OZV/3P2)s, in (1.3) and (1.5) must  be 
de te rmined  with account for the fact that the t empera tu re  difference between the components of the medium can equalize 
dur ing compress ion  in the shock wave, i . e . ,  macroscopica l ly  the process  takes place adiabat ical ly,  while 
mic roscop ica l ly  it takes place i so thermal ly .  Thus,  here  again we must  take the p r e s s u r e  and t empera tu re  as the 
independent va r iab les .  

To do this we r ep re sen t  the quantity (~ZV/3PZ)s in t e r m s  of the var iab les  p and T for the individual component.  It 
follows f rom (3.2) that 

where the function f (p ,T )  denotes 

ov �84 

' av { ov ~ l(,,,)=Iw), ~ \-Er-),  �9 (4.2)  

Consider ing T as a function of p and s, after different iat ing (4.1) with respec t  to p we obtain 

-~vp~ I, = C~Hr + \TF/~ ~-~-]p )=. (4.3) 

Setting Cp = const ,  i t  is easy to find on the bas is  of (4.2) the values  of (af/~p) T and (Of/OT)p.  Then, using the 
known thermodynamic  re la t ion  [10] 

-~-/== r \OT 1, (4.4) 

we f inal ly  obtain 

o~v) _{o,_Zv ~ 3r p v )  o~v , r f o v \ ~ r l o v ~  Io~w 

tn (4.5) V and Cp are  ei ther  the specific volume and the specific heat or the volume and heat capaci ty of an 
a r b i t r a r y  mass .  

Consider ing the additivity of the quant i t ies  appearing in (4.5), we can show that for unit  mass  of the mixture  

lOVe\ 7 V O~Vx - 0~V27 T In IOVI\ 
+ ( i -  n)l-E~-)pj. L n b W ~ - ~ ( t - , O a - ~ j +  in%~ +(l_:n)cv2]~ I-ET)p + 

OV~ q2 
\a-V-' lp + (1 - -  ~) x ~--~/vdj" (4.6) 

In (4.6) V 1 and V2 are  the specific volumes of the components of the mix ture ,  Cpl and Cp2 are  their  specific heats,  
and n is the mass  concentrat ion of the f i r s t  component,  connected with e by the re la t ion  
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epi 
n =ep~ + (1 --e) p~ (4.7) 

5. Assume that the f i r s t  component of the mix ture  is  a gas and the second cons is t s  of solid or liquid par t ic les  
suspended in the gas.  For  such sys tems  we can neglect  the compress ib i l i ty  of the second component in comparison 
with the f i r s t .  This leads to cons iderable  s implif icat ion of the re la t ions  obtained above. In fact, we set in (3.6), (3.9), 
and (4.6) 

Then, using the equation of state of the ideal gas to calculate  the der iva t ives ,  we obtain for u~o 

f 101 .... ] I/2 
u ~ = ~ D p i W ( i _ 8 )  pdj m (5 .i) 

and we obtain for u0 

- -  L e [epi _~ ( t  __ e) ps] [~p1 cpl ~_ (t  __ e) T1P2%~ ] u l ,  
(5.2) 

Here the quantity (0ZV/0pZ) s will be defined by the formula  

T i~p2 [~Pi -~ (i  - -  8) P2] [spicpi  "~- (i - -  ~) p~ %2] '2 
(5.3) 

In (5.1)=_(5.3) ul is  the conventional speed of sound in the gas,  cor responding  to the f i r s t  componen t of the 
medium, i . e . ,  

( "(Ip y/~ (5.4) 
u l ~ \  Pl / ' 

SinceT1 > 1, it  follows immedia te ly  f rom (5.1) and (5.2) that in the case in question u ~  > u o always.  

The assumption made on incompress ib i l i ty  of the second component makes it possible  to s implify considerably  
the form of condition (1.5) concerning applicabil i ty of the second v iscos i ty  concept. In fact, if in the r ight-hand side of 
(1.5) we subst i tute  (3.5) and the formulas  (5.1)-(5.3) obtained in this sect ion,  then af ter  several  t r ans format ions  we can 

obtain the re la t ion  

Ap ~ 2TiP~ cp2 (~'i - -  1) (t - -  s) ' . (5.5) 

It follows f rom (5.5) that @(0) = Y1 - 1 and @(1) = 0. In the interval  [0,1]@(e) dec reases  monotonical ly,  s ince 

d~ 2TiPlPs cvl cp2 (T12 -- 1) 
ds -- -- [(T 1 -~- t)  picpi s -t- 2Tlp~% ~ (i  -- e)] s ~ 0 ,  

Consequently,  the la rger  the gas content in the mixture  the weaker the shock wave mus t  be in o rder  that the 
condition concerning applicabil i ty of the second viscos i ty  be sat isf ied.  However, we mus t  note that on most  of the 
in te rva l  [0, 1] the reduct ion of @ is very  sl ight and @ is  essen t ia l ly  equal to 7t - 1. Only for values  of a very  close to 
unity does the change of @ become significant .  

In fact, it follows from (5.5) that 

2?ip2cp~. ( i  - -  e.) >I 10 (yi -I- I) plcpl e ~ (71 "F- i)p1%18 (5.6) 
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and  t h e r e f o r e  w e  c a n  s e t  ~(e) =71  - 1, if 

H o w e v e r ,  s i n c e  on  t h e  o t h e r  h a n d  

~, ,~;~ . (5.7) 

,:~ ~ 5 ( h  -F 1) PlcPl <~ 1 
T1 p~cp~ 

b y  e x p a n d i n g  t h e  r i g h t - h a n d  s i d e  of  (5.7) in to  a s e r i e s  in a t h i s  c o n d i t i o n  c a n  b e  w r i t t e n  in t h e  f o r m  

< l - -  5 (7__._~ + I). P*%L = ~ . .  (5 .8 )  
71 f~ep2 

T h u s ,  i f  e _< e . ,  t h e  c o n d i t i o n  f o r  a p p l i c a b i l i t y  of  t h e  s e c o n d  v i s c o s i t y  i s  w r i t t e n  in  t h e  s i m p l e  f o r m  

ap / p ~ ~ - l .  (5.9) 

C a l c u l a t i o n s  s h o w e d  t h a t  f o r  s y s t e m s  s u c h  a s  h e l i u m - c o a l ,  a i r - c o a l ,  a i r - w a t e r ,  and  a i r - q u a r t z ,  t h e  v a l u e s  of  e .  

e q u a l ,  r e s p e c t i v e l y ,  0 .993 ,  0 .990 ,  0 .998 ,  and  0.995.  

Uc~ 

~b 
a ~  

6 / 6 o  

t4 0 

Ap6 
a l so  

ltco 
U 0 

As~ 
8/8o 

tO--I I 

3.78-10 s 
2.93.10 s 
0.666 
1.54.10 s 
t .68.101 

3.44.i0 a 
2.92.1~ 
0.39_6 
t .04.10~ 
3.39.f02 

3.92.10 S 
3.32.10s 
0.399 
3.14. i04 
i.02.10 a 

iO'-~ [ t0-" 

helium-coal 
t.13.10 i 3.37.104 
8.89- t0 s 2.88. t0 ~ 
0.629 0.405 
4.42.t03 9.86.10 s 
4,83.t01 t .08.t02 

a l r - c o a [  

9.98. I0 ~ 2.37.104 
8.56. I0 s 2.17. I0 a 
0.366 0.205 
2.8t -IO s 4.02.t0 a 
9.t7-101 1.31.i0 ~ 

air -water 

t .  i2. t04 2.52.104 
9.54. iO s 2.2.t0~ 
0.390 0.32t 
8.84. i0 ~ I. 67. t0 ~ 
2.88. t0 s 5. i5.10 s 

i0"4 I tO-~ 

7.46,104 
7.2.t04 
8.88. t0 -e 
6.73. t0 ~ 
7.35- l01 

3.24.i04 
3. t9. t0 a 
3.8.10-2 
t .t4.10 3 
3.72.101 

3.28.10 ~ 
3.12.10 a 
OAtfi 
8.74. t04 
2.85.103 

9.55,i04 
9.5t . tO 
t .01.10 -~ 
1.14.t03 
1.24.t01 

3.41.i04 
3.39.t04 
4.15.10-~ 
i .35.t0 "~ 
4.4 

3.4-t@ 
3.38.t0 ~ 
1.56.t0 -~ 
t.32.t04 
4.31.10" 

The table presents the results of comparison of the width of the transition layer of a weak shock wave in pure 

helium and pure air, calculated on the basis of the usual formula of hydrodynamic theory of the transition layer [6] (in 

this formula both viscosities are assumed to have the same order of magnitude), with the width of the transition layer 

in the helium-coal, air-coal, and air-water systems, calculated on the basis of the relations obtained above. It was 

assumed that in all cases the dimension of the particle suspended in the gas was r =10-4cm, p = l0 G dynes/era 2, T = 

= 288 ~ K, and all the required data on the properties of the helium, air, coal, and water were taken from [Ii]. In this 

table 6 is the width of the transition layer in the mixture, and 50 is the width of the transition layer in the corresponding 
gas for the same values of Ap. All the data are represented in the CGS system. 

These data show that over a wide range of variation of 1 - e the width of the transition layer in the mixture in the 
helium-coal and air-coal systems is on the average more than an order of magnitude greater than in pure helium and 

pure air. This difference is still greater in the air-water system, where the difference reaches three orders of 
magnitude in comparison with the pure air. 

As the content of the solid and liquid particles in the mixture decreases the value of 6 initially increases and 
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after  reaching a maximum then begins to decrease .  These data also conf i rm the s ta tements  made above concerning the 
var ia t ion  of the function ~(e). 

6. When the densi t ies  of the components of the mixture  differ s ignif icant ly f rom one another,  i . e . ,  when one of 
the components is a gas, the presence  of the diffusion and barodiffusion phenomena leads to a change of the 
concentrat ion of the components in the t r ans i t ion  layer  of the weak shock wave and resu l t s  in a considerable  inc rease  
of i ts  width. As was shown in [12], in this case 

6 ~  9~cpl lT( l - -n)  (1 I \ [  r ~2 
Ap - ~ )  ~ T ) ,  (6.1) 

where l is the mean free path of the gaseous molecule .  Consequently,  in such cases  we mus t  obviously consider  in 
addition to the thermal  relaxat ion mechan i sm this additional mechanism of inc rease  of 6. However, it can be shown 
that the two p rocesses  a re  prac t ica l ly  independent and do not affect one another.  

In fact, i t  follows f romthe  above table that a very  large  change of the concentrat ion of the solid and liquid 
par t ic les  in the gas has very l i t t le effect on the magnitude of 6 resu l t ing  from thermal  re laxat ion.  This effect will be 
even less  impor tan t  for weak shock waves,  where the concentrat ion changes a re  smal l .  Since these changes a re  due to 
the diffusion and barodiffusion phenomena the la t te r  will have prac t ica l ly  no influence on the thermal  relaxation process .  

Conversely ,  it  follows f rom (6.1) that smal l  changes of the t empera tu re  in the t rans i t ion  layer  of weak shock 
waves,  which a re  connected with thermal  relaxat ion,  will not affect the value of 6 due to the diffusion and barodiffusion 
phenomena. 

Thus the processes in question actually are independent. This means that the width of the shock wave transition 
layer will be determined by the larger of the two values of 5 owing to these processes separately. 

The author wishes to thank Ya. B. Zel 'dovich,  A. S. Kompanei ts ,  N. M. Kuznetsov, and V. A. Belokon for 
valuable suggest ions and the i r  in te res t  in this study. 
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